Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(6): 5209-5216, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34213711

RESUMO

Stripe rust and leaf rust are among the most devastating diseases of wheat, limiting its production globally. Wheat wild relatives harbour genetic diversity for new genes and alleles for all major wheat diseases. However, the use of this genetic variation from wild progenitor and non-progenitor species has been limited in the breeding programs. Reasons include limited recombination of donor and recipient genomes and the lack of tertiary gene pool markers. Here, we describe the development of a SNP based marker from the flow-sorted and sequenced Aegilops umbellulata chromosome 5U which can be used for marker assisted selection of four pair of alien leaf rust and stripe rust resistance genes. Lr57-Yr40_CAPS16 marker was reported earlier to be linked with alien leaf and stripe rust resistance genes introgressed on wheat chromosome 5DS. Due to its dominant nature and laborious to work with, a new SNP-based KASP marker, XTa5DS-2754099_kasp23, was developed from the same CAPS marker contig. XTa5DS-2754099_kasp23 was tested in Aegilops umbellulata, Ae. geniculata, Ae. peregrina and Ae. caudata derived alien introgression lines, which harbour four pairs of linked leaf and stripe rust genes; Lr76-Yr70, Lr57-Yr40, LrP- YrP, LrAc-YrAc, respectively. This KASP marker was found to be effective for the selection of the aforesaid four pairs of leaf rust and stripe rust resistance genes. Further, we tested and validated XTa5DS-2754099_kasp23 on commercial varieties and advanced breeding lines from four countries (India, Egypt, Australia and UK) including hexaploid and durum wheat. Our results provide evidence that KASP marker, XTa5DS-2754099_kasp23 can be used in marker-assisted selection of the four pairs of rust resistance alien genes in wheat breeding programmes.


Assuntos
Resistência à Doença/genética , Triticum/genética , Alelos , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Frequência do Gene/genética , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único/genética
2.
Front Plant Sci ; 12: 738805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975937

RESUMO

Brassica juncea L. is the most widely cultivated oilseed crop in Indian subcontinent. Its seeds contain oil with very high concentration of erucic acid (≈50%). Of late, there is increasing emphasis on the development of low erucic acid varieties because of reported association of the consumption of high erucic acid oil with cardiac lipidosis. Erucic acid is synthesized from oleic acid by an elongation process involving two cycles of four sequential steps. Of which, the first step is catalyzed by ß-ketoacyl-CoA synthase (KCS) encoded by the fatty acid elongase 1 (FAE1) gene in Brassica. Mutations in the coding region of the FAE1 lead to the loss of KCS activity and consequently a drastic reduction of erucic acid in the seeds. Molecular markers have been developed on the basis of variation available in the coding or promoter region(s) of the FAE1. However, majority of these markers are not breeder friendly and are rarely used in the breeding programs. Present studies were planned to develop robust kompetitive allele-specific PCR (KASPar) assays with high throughput and economics of scale. We first cloned and sequenced FAE1.1 and FAE1.2 from high and low erucic acid (<2%) genotypes of B. juncea (AABB) and its progenitor species, B. rapa (AA) and B. nigra (BB). Sequence comparisons of FAE1.1 and FAE1.2 genes for low and high erucic acid genotypes revealed single nucleotide polymorphisms (SNPs) at 8 and 3 positions. Of these, three SNPs for FAE1.1 and one SNPs for FAE1.2 produced missense mutations, leading to amino acid modifications and inactivation of KCS enzyme. We used SNPs at positions 735 and 1,476 for genes FAE1.1 and FAE1.2, respectively, to develop KASPar assays. These markers were validated on a collection of diverse genotypes and a segregating backcross progeny. KASPar assays developed in this study will be useful for marker-assisted breeding, as these can track recessive alleles in their heterozygous state with high reproducibility.

3.
Theor Appl Genet ; 133(3): 903-915, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31894365

RESUMO

KEY MESSAGE: Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5DIL) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.


Assuntos
Aegilops/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Telômero/genética , Triticum/genética , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Introgressão Genética , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Triticum/microbiologia
4.
Theor Appl Genet ; 132(5): 1473-1485, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706082

RESUMO

KEY MESSAGE: Novel rust resistance genes LrP and YrP from Ae. peregrina identified on chromosome 5D and the linked markers will aid deployment of these genes in combination with other major/minor genes. Aegilops peregrina, a wild tetraploid relative of wheat with genome constitution UUSS, displays genetic variation for resistance to leaf and stripe (yellow) rust. The wheat Ae. peregrina introgression line, IL pau16058, harbouring leaf and stripe rust resistance, was crossed with wheat cv. WL711 to generate an F2:3 mapping population. Inheritance studies on this population indicated the transfer of dominant co-segregating resistance to leaf and stripe rust. Ethyl methane sulphonate mutagenesis of IL pau16058 identified independent loss-of-function mutants for leaf and stripe rust resistance, indicating that the leaf and stripe rust resistance is controlled by independent genes, herein designated LrP and YrP, respectively. A high-resolution genetic map of LrP and YrP was constructed using the Illumina Infinium iSelect 90K wheat array and resistance gene enrichment sequencing (RenSeq) markers. The map spans 4.19 cM on the distal-most region of the short arm of chromosome 5D, consisting of eight SNP markers and one microsatellite marker. LrP and YrP co-segregated with markers BS00163889 and 5DS44573_snp and was flanked distally by the SNP marker BS00129707 and proximally by 5DS149010, defining a 15.71 Mb region in the RefSeq v1.0 genome assembly.


Assuntos
Aegilops/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Aegilops/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Genoma de Planta , Doenças das Plantas/microbiologia
5.
J Genet ; 95(4): 933-938, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27994192

RESUMO

A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat-Ae. caudata introgression line (IL) T291- 2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.


Assuntos
Resistência à Doença/genética , Estudos de Associação Genética , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Fenótipo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...